## Exercise 31

In Exercises 29 to 31, use vector methods to describe the given configurations.
The plane determined by the three points $\left(x_{0}, y_{0}, z_{0}\right),\left(x_{1}, y_{1}, z_{1}\right)$, and $\left(x_{2}, y_{2}, z_{2}\right)$

## Solution

Only two linearly independent vectors are needed to get a plane. Subtract the position vectors from one another to obtain them.

$$
\begin{aligned}
\mathbf{r}_{1} & =\left(x_{1}, y_{1}, z_{1}\right)-\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right) \\
\mathbf{r}_{2} & =\left(x_{2}, y_{2}, z_{2}\right)-\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{2}-x_{0}, y_{2}-y_{0}, z_{2}-z_{0}\right)
\end{aligned}
$$

The linear combination of $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ results in an entire plane that passes through the origin ( $s=0$ and $t=0$ ).

$$
\begin{aligned}
\mathbf{r}(s, t) & =s \mathbf{r}_{1}+t \mathbf{r}_{2} \\
& =s\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right)+t\left(x_{2}-x_{0}, y_{2}-y_{0}, z_{2}-z_{0}\right)
\end{aligned}
$$

By adding $\left(x_{0}, y_{0}, z_{0}\right)$ to $\mathbf{r}(s, t)$, this plane can be made to pass through $\left(x_{0}, y_{0}, z_{0}\right)$ when $s=0$ and $t=0$ instead.

$$
\left\{\left(x_{0}, y_{0}, z_{0}\right)+s\left(x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right)+t\left(x_{2}-x_{0}, y_{2}-y_{0}, z_{2}-z_{0}\right), s \in \mathbb{R}, t \in \mathbb{R}\right\}
$$



